Review Quiz 3

- **Instructions.** You have 15 minutes to complete this review quiz. You <u>may</u> use your calculator. You may not use any other materials. Submit your answers using the provided Google Form.
- 1. If $f_x(1,2) = f_y(1,2) = 0$, $f_{xx}(1,2) = 3$, $f_{yy}(1,2) = 5$, and $f_{xy}(1,2) = 2$, then:
 - (a) f has a local minimum at (1, 2)
 - (b) f has a local maximum at (1, 2)
 - (c) f has a saddle point at (1, 2)
 - (d) f has neither a local extreme point nor a saddle point at (1, 2)
 - (e) There is not enough information to determine the behavior of f at (1, 2)
- 2. You want to use Lagrange multipliers to find two positive numbers *x* and *y* that add up to 1000 and whose product is maximum. Which of the following systems of equations do you need to solve?
 - (a) $y = \lambda x, x = \lambda y, x + y = 1000$
 - (b) $1000 = \lambda x$, $1000 = \lambda y$, x + y = 1000
 - (c) $xy = \lambda, x + y = \lambda, x + y = 1000$
 - (d) $y = \lambda(x + y), x = \lambda(x + y), x + y = 1000$
 - (e) $y = \lambda, x = \lambda, x + y = 1000$
- 3. We can approximate the double integral $\int_0^6 \int_0^6 f(x, y) dy dx$ with a Riemann sum by partitioning the region with $0 \le x \le 6$ and $0 \le y \le 6$ into four equal squares. Which expression could arise as our approximation?
 - (a) $[f(3,3) + f(3,6) + f(6,3) + f(6,6)] \cdot 4$
 - (b) $[f(3,3) + f(3,6) + f(6,3) + f(6,6)] \cdot 6$
 - (c) $[f(3,3) + f(3,6) + f(6,3) + f(6,6)] \cdot 9$
 - (d) $[f(3,3) + f(3,6) + f(6,3) + f(6,6)] \cdot 16$
 - (e) $[f(3,3) + f(3,6) + f(6,3) + f(6,6)] \cdot 36$

4. Which solid has volume described by the triple integral $\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{0}^{2} 1 dz dy dx$?

- (a) sphere
- (b) hemisphere
- (c) cone
- (d) cylinder
- (e) cube

5. The iterated integral $\int_{-2}^{0} \int_{0}^{-x} f(x, y) dy dx$ must be equal to

- (a) $\int_0^{-x} \int_{-2}^0 f(x, y) dx dy$ (b) $\int_0^2 \int_{-y}^{-2} f(x, y) dx dy$ (c) $\int_{-2}^0 \int_0^{-y} f(x, y) dx dy$
- (d) $\int_{0}^{2} \int_{-2}^{-y} f(x, y) dx dy$
- (a) $\int_0^0 \int_{-2}^{-2} \int (x, y) dx dy$
- (e) $\int_{-2}^{0} \int_{-y}^{0} f(x, y) \, dx \, dy$